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Abstract

Malaria parasites dramatically alter the rheological properties of infected red blood cells. In
the case of Plasmodium vivax, the parasite rapidly decreases the shear elastic modulus of
the invaded RBC, enabling it to avoid splenic clearance. This study highlights correlation
between rosette formation and altered membrane deformability of P. vivax-infected erythro-
cytes, where the rosette-forming infected erythrocytes are significantly more rigid than their
non-rosetting counterparts. The adhesion of normocytes to the PvIRBC is strong (mean
binding force of 440pN) resulting in stable rosette formation even under high physiological
shear flow stress. Rosetting may contribute to the sequestration of PvIRBC schizonts in the
host microvasculature or spleen.

Author Summary

While Plasmodium vivax is generally not as virulent as P. falciparum; severe manifesta-
tions of vivax malaria do occur. While little is known about the mechanisms underlying
the pathobiology of P. vivax, most agree its ability to increase the deformability of stiff host
reticulocytes is key adaptation to avoid splenic clearance. We show that P. vivax-infected
red blood cells (PvIRBCs) rosette irreversibly with normocytes and are significantly more
stiff than non-rosetting PVIRBCs. We discuss how these stiff PYIRBC rosettes are removed
from the peripheral circulation and its rheopathological consequences.
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Introduction

Plasmodium spp. derived changes to the rheology of infected red blood cells (IRBCs) play a
central role in the pathogenesis of human malaria. Malaria parasite remodelling of IRBCs dra-
matically alter their deformability and cytoadhesive properties [1]. Interestingly, for all four
non-zoonotic causes of human malaria (P. falciparum, P. vivax, P. ovale and P. malariae)
IRBCs cytoadhere to uninfected RBCs forming distinctive ‘rosettes’ [2-4]. While the precise
role of rosetting in malaria pathogenesis remains contentious, many believe that this adapta-
tion may play important roles in the survival of parasites within the circulation [5]. Rheological
studies on P. falciparum rosettes show them to be stable and the binding force between the
IRBC and the uninfected RBCs tends to be very strong (>300pn) [6]. Indeed, most studies on
rosetting have focused on P. falciparum, leading to the discovery of rosetting ligands such as
PfEMP1 [7], STEVOR [8], and RIFINSs [9]. Although rosette formation has been reported to be
a common phenomenon in P. vivax [2, 10, 11], the rosetting ligand of this species has yet to be
discovered. Despite recent evidence showing cytoadhesive potential for P. vivax-infected RBCs
[12], most consider this species to be much less adhesive than P. falciparum, as it lacks any
orthologue to the P/EMP1 protein (the key cytoadhesive ligand in P. falciparum) and the
knobby IRBC ultrastructure (which concentrate and display P/EMP-1) that facilitate binding
of IRBC:s to the vascular endothelium under physiological shear flow [13]. Therefore, although
P. vivax rosettes are relatively commonly observed, it is not known whether they are stable
structures or ephemeral ex-vivo formations that break apart in the haemodynamic environ-
ment of the circulation in vivo. The objective of this study was to examine the rheological con-
sequences of rosetting on PVIRBCs and specifically quantify the binding strength of
normocytes to PVIRBCs.

Methods
Ethics statement

Blood samples of vivax malaria patients from the Northwestern Thailand were collected under
the following ethical guidelines and approved protocols: OXTREC 027-025 (University of
Oxford, Centre for Clinical Vaccinology and Tropical Medicine, UK) and MUTM 2008-215
from the Ethics Committee of Faculty of Tropical Medicine, Mahidol University, Thailand.
Experiments were conducted in Singapore Immunology Network (SIgN) and National Univer-
sity of Singapore (NUS), Singapore. All adult subjects provided informed written consent, and
a parent or guardian of any child participant provided informed written consent on their
behalf. Ten clinical samples were collected from malaria patients of SMRU clinics in North-
western Thailand using BD Vacutainer with lithium heparin anticoagulant. Thick and thin
blood smears were prepared for each sample to determine the species of malaria parasite, the
parasitemia, and the predominating developmental stage of the parasite. White blood cells
were depleted with cellulose (Sigma-Aldrich) packed columns. Blood samples containing pre-
dominantly ring-stage parasites (> 70%) were cryopreserved with Glycerolyte 57 (Fenwal). For
experiments, cryopreserved isolates were thawed and the parasites matured in vitro [14]. When
the parasite population reached late erythrocytic stages (late trophozoite and schizont), 50 ul of
the culture suspension was taken for rosetting assay using a wet mount method as described
elsewhere[11]. Rosetting rate (percentage of rosette-forming IRBCs) was determined by exam-
ining the number of of rosettes per 200 IRBCs observed. Subsequently, 1 pl packed RBCs were
suspended in 1 ml of 1X PBS supplemented with 1% BSA for micropipette aspiration and
microfluidic assays.
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Micropipette aspiration was modified from Hochmuth et al [15]. Briefly, aspiration was per-
formed at 32°C to 37°Cand observed using an oil immersion objective (1000 x magnification)
with an Olympus research inverted microscope IX73. Borosilicate glass micropipettes (diame-
ter 1.5+0.2 um) were used to hold or aspirate RBCs. Rosetting and non-rosetting IRBCs were
individually selected for measurements. Individual RBCs were aspirated at a pressure drop rate
of 0.5 Pa/s for 100s. The corresponding cell membrane deformation was recorded using the
Dual CCD Digital Camera DP80 (Olympus) at an image taking rate of one frame/s. Images
were processed by cellSens Dimension (Olympus). Hemispherical cap model was used to calcu-
late the membrane shear elastic modulus, as a quantitative surrogate measure of the rigidity of
RBC membrane skeleton [15].

To quantify the binding force between RBCs and an IRBC in a P. vivax rosette, a double
pipette aspiration method was used as described previously [6]. A rosette was held by a micro-
pipette (diameter = 2.0+0.2um). A second micropipette was used to aspirate the uninfected
RBC:s of the rosette at a gradually increased aspirating pressure. The force (F) to detach an
RBC from an IRBC was calculated as F = mir® x P; where r is the inner diameter of the second
micropipette, and P is the pressure required to detach two cells. The aspiration pressure was
measured by a pressure transducer (P61 model, Validyne Engineering) and recorded by USB-
COM Data logger (Validyne Engineering). The process was recorded using a Dual CCD Digital
Camera DP80 (Olympus) at one frame/s. Recorded images were analyzed with cellSens Dimen-
sion (Olympus).

To characterize the ability of PYIRBCs to move through narrow channels, polydimethylsi-
loxane (PDMS) microfluidic chips with 4pm slits were used. To avoid RBCs from interacting
with (or adhering to) the walls of the microfluidic chip, channels were pre-filled and incubated
with 1X PBS supplemented with 1% BSA for one hour prior to the experiment being per-
formed. Subsequently, 1pl of RBC suspension was injected into the microfluidic channel. Cells
were forced through the channel at a constant pressure gradient of 0.1 Pa/um. Numbers of
RBCs that blocked at the openings of the microfluidic channels in each experiment were
recorded. Videos of the microfluidic assay were recorded using a Dual CCD Digital Camera
DP80 (Olympus). Data were subsequently analyzed using the cellSens Dimensions software
(Olympus). GraphPad Prism 5 was used for statistical analysis of all experimental data. The
one-way ANOVA test was used to compare differences between different experimental groups.

Results

In keeping with previous report [11], cryopreserved P. vivax isolates showed rosetting, albeit
with lower frequency than the fresh isolates. The rosettes found in these cryopreserved isolates
were generally small. A mode of three uninfected normocytes were involved in rosettes (Fig 1).
Similar to the previous study [11], rosetting in this study was only observed with RBCs infected
with the late erythrocytic stages (predominantly schizonts).

Membrane shear elastic modulus measurements were used to quantify IRBC membrane
deformability (Fig 1A). Uninfected reticulocytes showed significantly higher membrane shear
moduli than uninfected normocytes (11.40+1.85 pN/um vs. 4.55+2.58 pN/um; P < 0.001).
Interestingly, the membrane shear elastic moduli of P. vivax ring-infected reticulocytes were
reduced to values similar to uninfected normocytes (6.09+£6.45 pN/um). The membrane shear
elastic moduli of IRBCs remained virtually unchanged at the trophozoite stage (6.45+4.31 pN/
um). The membrane shear elastic modulus of non-rosetting schizonts were significantly higher
than measurements recorded by trophozoites (8.84+6.88 pN/um; P < 0.05). Measurements
performed on rosetting schizonts (12.1+11.36 pN/um) were significantly higher than those of
non-rosetting schizonts (P < 0.01).
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Fig 1. (A) The effect of P. vivax invasion, development and rosetting on the deformability of the infected
reticulocyte membrane (normocytes are shown as a comparator). Plot showing membrane shear moduli
(SM) (a higher SM indicates a reduced membrane deformability) of different cell types and stages of P. vivax
erythrocytic development, with geometric mean (overall of 10 isolates) SM of each group indicated by a red
line (each dot represents an individual cell measurement the total ‘n = x’). Pictures of respective cell types
before (i) and during (ii) membrane shear modulus measurement by micropipette aspiration are shown under
the graph. Mean (Geometric) shear moduli was compared using ANOVA (Bonferroni correction) and multiple
comparison test (tukey). Uninfected normocytes were significantly more deformable than uninfected
reticulocytes (P< 0.001). However both ring and trophozoite P. vivax stages become progressively more
deformable (P< 0.05) until schizont stage (the very mature schizonts ‘segmenters’ were especially rigid).
When normocytes adhered (rosette) with schizonts the infected cell membrane became significantly more
rigid than non-rosetting schizonts (P< 0.001). (B) The number of normocytes involved in the rosette had no
significant effect on the mean deformability kinetics (aspirated length versus the suction pressure) of the
IRBCs. Pictures of cells before (i) and during (i) measurement are shown under the graph. Measurements
were done with increasing aspirating pressure until cells became structurally unstable under that pressure
point (buckling effect), as shown by pictures (inset).

doi:10.1371/journal.pntd.0004912.9001

All RBCs showed an increased elongation length (i.e. increased deformability) with increas-
ing aspiration pressure (Fig 1B). The attachment of a single uninfected RBC caused a signifi-
cant reduction in deformability of the IRBC (P < 0.05). However, a Spearman’s rank
correlation analysis showed that the attachment of additional RBCs did not result in further
decreases to IRBC deformability, regardless of the size of the rosettes formed (Fig 1B).

From dual micropipette aspiration assays (Fig 2A) (S1 Video), the shear force to separate
uninfected RBCs from a rosetting complex was 440+197.4pN, which was similar to that
reported previously for P. falciparum [6] (Fig 2B). In microfluidic experiments (Fig 2C), RBCs
infected with either P. vivax ring, trophozoite or schizonts (early schizont and mature segment-
ing schizont) stages (Three clinical isolates in total were used) were injected into microfluidic
channels as previously shown (S2-S5 Videos) [16]. The only cells observed blocking the micro-
fluidic restrictions were rosetting and very mature segmenting schizonts. Rosettes blocking the
microfluidic restrictions did not lose cells under pulsed shear flow pressure up to of 1.0 Pa/um.

To better determine if the act of rosetting directly causes changes to the IRBC shear modu-
lus (as opposed to IRBCs with a higher shear modulus are more likely to form rosettes) we
measured the shear modulus of rosetting IRBCs, then using the dual micropipette we carefully
peeled off the uninfected normocytes and repeated the measurement on the denuded IRBC. As
the rosetting cells strongly bind to the IRBC, the separation process usually resulted the
destruction of the IRBC. We were able to conduct 5 successful paired rosette separations, show-
ing a significant reduction in the mean geometric shear modulus of the IRBC from 13.3pN
(Rosetting) to 9.5pN (Non-Rosetting) (P<0.05, t = 2.8, df = 4(Paired t-test)).

Discussion

Plasmodium vivax, the most globally-widespread cause of human malaria, has a specific tro-
pism for the rigid CD71+ve reticulocytes generally found in the bone marrow [14, 17]. Within
six hours post invasion, P. vivax remodels the IRBC membrane and cytoskeleton, causing it to
become as deformable as an uninfected normocyte [14, 18]. In contrast to P. falciparum, RBCs
infected with trophozoite and early schizont stages of P. vivax retain a relatively low shear
modulus (compared to reticulocytes and P. falciparum IRBCs), and are able to deform and
pass through micro-capillaries and 2um sinusoidal slits [16]. It is thought that P. vivax
increases the deformability of the host cell to avoid splenic clearance [18].

Our results show that rosetting with at least one uninfected RBC is closely associated with a
a significant increase in the rigidity of the P. vivax IRBCs. While it is difficult to demonstrate
direct causality, we were able to demonstrate that the removal of rosetting RBCs, restores the
deformability of the IRBC to the levels usually seen in non rosetting IRBCs.
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(A)

(B)

Force (pN)

P. falciparum P. Vivax
(Nash et al., 1992)

Median 330 412
90th percentile 780 804.8
Mean £SD 440 +220 (n=45) 440 +197.4 (n=15)

Trophozoite Segmenting Schizont Schizont
(non-rosetting) (rosetting)
Fig 2. (A) Binding affinity of the rosetting complex using dual micropipette aspiration technique (B) Comparison of
binding forces recorded from P. vivax rosettes (from this study) and P. falciparum rosettes (Nash et al 1992). (C)

Examples of IRBCs capable of moving through 4 um microfluidic channel openings (Trophozoites (firstimage)) at
0.1 Pa and those that are trapped mature schizonts.

doi:10.1371/journal.pntd.0004912.9002

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004912  August 10,2016 6/10



@' PLOS NEGLECTED
2 : TROPICAL DISEASES Biomechanics of Plasmodium vivax Rosettes

It is Important to understand that these rosettes are stable even under shear stress, and on
encountering microfluidic constrictions they not only block the restriction, but also retain their
full complement of attached uninfected red cells. The only other P. vivax IRBCs that tend to
block the microfluidic restrictions are very mature schizonts. Traditionally these very late stage
schizonts are referred to as ‘segmenters’, because the merozoites are fully mature and clearly
defined within the schizont complex. In P. falciparum, late stage asexual parasites become rigid
due to a range of proteins such as RESA, KHARP, MESA, PfEMP3 and STEVOR interacting
with the IRBC cytoskeleton and membrane[1, 19-23]. In P. vivax we do not understand the
molecular basis driving the switch from a relatively deformable early schizonts, to a rigid seg-
menter. However, as this change occurs an hour or so before schizonts rupture; we speculate
the rigidity in P. vivax segmenters is due to osmotic deregulation (as opposed to the incorpo-
ration of crosslinking proteins into the cytoskeleton) as the IRBC membrane degenerates prior
to merozoite release. In any case, our study clearly demonstrates that segmenting schizonts and
rosetting are the only events responsible for significant rigidity of the P. vivax IRBCs.

Recent studies in Brazilian individuals infected with P. vivax reveal a disparate and unexpected
disappearance of schizonts from the circulation [24]. Although this may be partially due to cytoad-
herence to endothelial receptors expressed on the surface of the vascular endothelium [12], we sug-
gest that the increased rigidity of segmenters and rosetting IRBCs is a major factor behind the
paucity of P. vivax schizonts in the circulation. The ligands responsible for P. vivax rosetting remain
unknown. The vir proteins of P. vivax have been associated with endothelial cytoadhesion [12].

While we still expect to see spontaneous rosette formation occurring in the circulation, our
study suggests that a large proportion P. vivax rosettes will be sequestered. Although the inci-
dence and rate of P. vivax rosetting is high, we are still unsure how this phenomenon contributes
to the pathology of vivax malaria[25]. It is important to understand that while rosetting has been
observed in most forms of human malaria[2-4, 26], we only have a a clear understanding of this
process in P. falciparum. Future studies should strive to understand the pathobiological process
behind non-falciparum and possible develop therapeutics that disrupt their formation[27, 28].

Supporting Information

S1 Video. Dual micropipette aspiration technique was applied to detach the uninfected
erythrocyte adhered to infected erythrocytes. Force required to dissociate the rosette was
recorded.

(AVT)

$2 Video. Microfluidic assay on one recruited P. vivax infected sample. The video showed
the unblocked flow condition, where cells moved through the channel openings rapidly and
identity of the cells (infected and uninfected) cannot be differentiated clearly from the video.
(AVI)

$3 Video. Microfluidic assay video showing a non-rosette forming trophozoite-infected
erythrocyte wiggling through the channel opening with slight impediment.
(AVI)

$4 Video. Microfluidic assay video showing a non-rosette forming segmenting schizont-
infected erythrocyte being blocked at the channel opening. Other cells were seen passing
through the channel opening.

(AVI)

S5 Video. Microfluidic assay video showing a rosette forming schizont infected erythrocyte
being blocked at the channel opening. Participating uninfected erythrocytes of the rosette did

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004912  August 10,2016 7/10


http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0004912.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0004912.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0004912.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0004912.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0004912.s005

©PLOS

NEGLECTED

TROPICAL DISEASES Biomechanics of Plasmodium vivax Rosettes

not detach from the blockade to move freely, showing the stability of the rosetting complex.
(AVI)
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